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Major Goals:  The proposed research will significantly advance the basic science and fundamental understanding 
of how rate-dependent material response couples to large, nonlinear material deformation under applied 
electrostatic loading to control the nonlinear dynamics and failure mechanisms of dielectric elastomers (DEs).  We 
will also focus on exploring the exciting possibility of exploring and tuning the nonlinear dynamical behavior through 
a single parameter, i.e. the surface energy of the DE.

Accomplishments:  1. Demonstrated the significant effect that surface tension can have on the deformation of 
dielectric elastomers

2.     Found that increasing surface tension, or equivalently the elastocapillary number, results in an increase in the 
critical voltage or electric field needed to nucleate an electromechanical instability in a dielectric elastomer

3.     We have found, in agreement with recent experimental studies of constrained dielectric elastomer films, a 
transition in the surface instability mechanism depending on the elastocapillary number.  In particular, a unique 
creasing to wrinkling surface instability was found as the elastocapillary number becomes larger than the film 
thickness

4.  We demonstrated, using both nonlinear finite element simulations and a linear stability analysis, the emergence 
of an electro-elastocapillary Rayleigh-Plateau instability in dielectric elastomer (DE) films under 2D, plane strain 
conditions.  When subject to an electric field, the DEs exhibit a buckling instability for small elastocapillary numbers.  
For larger elastocapillary numbers, the DEs instead exhibit the Rayleigh-plateau instability.  The stability analysis 
demonstrates the critical effect of the electric field in causing the Rayleigh-plateau instability, which cannot be 
induced solely by surface tension in DE films.  Overall, this work demonstrates the effects of geometry, boundary 
conditions, and multi-physical coupling on a new example of Rayleigh-Plateau instability in soft solids.

5.  Uncovered the fact that the lowest order instability wavelength is an infinite wavelength, while finite wavelength 
Rayleigh-Plateau instability is observed for larger critical voltages.

6.  One of the key challenges in modeling the nonlinear dynamical behavior of DEs is that all computational 
techniques to solve the coupled electromechanical system of equations for this class of materials have universally 
centered around a fully coupled monolithic formulation, in which the mechanical and electrostatic equations are 
solved simultaneously.  Such monolithic formulations are accurate, but require significant computational expense, 
which has significantly hindered the ability to solve large scale, fully three-dimensional problems involving complex 
deformations and electromechanical instabilities of DEs.  During this period, we have provided the theoretical basis 
for the effectiveness and accuracy of staggered explicit-implicit finite element formulations for DEs, where the 
mechanical and electrostatic equations are solved separately, while demonstrating the simplicity of the resulting 
staggered formulation.  We have demonstrated the stability and accuracy of the staggered approach by solving 
complex electromechanically coupled problems involving electroactive polymers, where we focused on problems 
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involving electromechanical instabilities such as creasing, wrinkling, and bursting drops.  In all examples, effectively 
identical results to the fully monolithic solution are obtained, showing the accuracy of the staggered approach at a 
significantly reduced computational cost.

7.  We anticipate this development will be critical in enabling ARL personnel to easily and efficiently adapt their 
simulation codes to perform large-scale structural analyses of the dynamic behavior of DEs.
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(Reporting Period:  May 2014 – October 2017) 

 
Nonlinear Dynamics of Electroelastic Dielectric Elastomers 

 
Harold S. Park 

Mechanical Engineering 
Boston University, Boston, MA 02215 

 
Objective 
The proposed research will significantly advance the basic science and fundamental understanding of how rate-
dependent material response couples to large, nonlinear material deformation under applied electrostatic loading to 
control the nonlinear dynamics and failure mechanisms of dielectric elastomers (DEs).  We will also focus on 
exploring the exciting possibility of exploring and tuning the nonlinear dynamical behavior through a single parameter, 
i.e. the surface energy of the DE. 
 
Approach 
This objective will be accomplished by:    

• Developing a nonlinear, coupled electromechanical displacement-pressure FEM formulation to enable 
fundamental studies of incompressible DE material behavior using standard low-dimensional FEs by 
eliminating any volumetric locking effects.   

• Investigating surface tension effects on tailoring the nonlinear dynamics and electromechanical instability 
mechanisms of DEs. 

 
Relevance to Army 
The key source of the technological excitement surrounding dielectric elastomers (DEs) stems from the fact that if 
sandwiched between two compliant electrodes that apply voltage to the elastomer, the DE can exhibit both significant 
thinning and in-plane expansion.  This unique large deformation-based actuation capability has led to many Army-
relevant applications for DEs, including the potential to harvest energy from sources as diverse as human muscle 
motion and ocean waves, medical devices, and perhaps most importantly, artificial muscles.  
 
More recently, various applications have been proposed based on DEs operating in fluidic environments.  These 
include in situ magnetic resonance imaging (MRI), untethered underwater mobile systems, soft tunable lenses, soft 
body locomotion and the preparation of bio-inspired surfaces.  All of these applications require the understanding of 
DEs in wet environments, where a fundamental understanding of the nonlinear dynamics of DEs in fluidic 
environments is currently lacking. 
 
Accomplishments for Reporting Period 

• Demonstrated the significant effect that surface tension can have on the deformation of dielectric 
elastomers.  This is observed below in Figure 1, which shows a DE subject to voltage loading and varying 
amounts of surface tension.  Figure 1(b) shows the deformation if no surface tension is present, while 
Figure 1(c) shows the deformation if surface tension resulting in an elastocapillary numer of 10 is present.  
As can be seen, if surface tension is present, as shown in Figure 1(c), the shape of the DE for the same 
amount of applied voltage is completely different:  square instead of rectangular. 

 



 
Figure 1:  (a) Schematic of DE with homogeneous boundary conditions; (b) Deformed configuration for 
elastocapillary number of 0; (c) Deformation configuration with elastocapillary number of 10. 
 
 

• Found that increasing surface tension, or equivalently the elastocapillary number, results in an increase in 
the critical voltage or electric field needed to nucleate an electromechanical instability in a dielectric 
elastomer.  This is shown below in Figure 2, for the boundary condition shown above in Figure 1(a).  
Figure 2 shows the dramatic increase in critical voltage that occurs as the elastocapillary number increases. 

 

 
Figure 2:  Homogeneous deformation of a DE subject to voltage loading for different elastocapillary numbers. 
 

• We have found, in agreement with recent experimental studies of constrained dielectric elastomer films, a 
transition in the surface instability mechanism depending on the elastocapillary number.  In particular, a 
unique creasing to wrinkling surface instability was found as the elastocapillary number becomes larger 
than the film thickness, as shown below in Figure 3. 
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Figure 3:  Computationally observed transition in the surface instability mechanism in DEs as a function of 
the elastocapillary length. 
 

• We demonstrated, using both nonlinear finite element simulations and a linear stability analysis, the 
emergence of an electro-elastocapillary Rayleigh-Plateau instability in dielectric elastomer (DE) films 
under 2D, plane strain conditions, as summarized below in Figure 4.  When subject to an electric field, the 
DEs exhibit a buckling instability for small elastocapillary numbers.  For larger elastocapillary numbers, 
the DEs instead exhibit the Rayleigh-plateau instability.  The stability analysis demonstrates the critical 
effect of the electric field in causing the Rayleigh-plateau instability, which cannot be induced solely by 
surface tension in DE films.  Overall, this work demonstrates the effects of geometry, boundary conditions, 
and multi-physical coupling on a new example of Rayleigh-Plateau instability in soft solids. 

 



 
Figure 4:  (a) Schematic with boundary conditions for a DE films subjected to elastocapillary and electrical 
forces.  (b and c) FE results showing different modes of instability.  (b) Buckling for normalized 
elastocapillary number of 0.5 when the critical voltage reaches 1.066.  (c) Rayleigh-Plateau instability for 
normalized elastocapillary number of 5 when the critical voltage reaches 2.03.  D_VEC refers to the 
displacement magnitude. 
 
 

• Found that the electro-elastocapillary instability transitions from buckling (shown in Figure 4(b)) to 
Rayleigh-Plateau (shown in Figure 4(c)) at a critical normalized elastocapillary number of 2, as shown in 
Figure 5. 

 

 
Figure 5:  Homogeneous deformation of a DE subject to voltage loading for different elastocapillary numbers. 
 



• Uncovered the fact that the lowest order instability wavelength is an infinite wavelength, while finite 
wavelength Rayleigh-Plateau instability is observed for larger critical voltages. 

 
• One of the key challenges in modeling the nonlinear dynamical behavior of DEs is that all computational 

techniques to solve the coupled electromechanical system of equations for this class of materials have 
universally centered around a fully coupled monolithic formulation, in which the mechanical and 
electrostatic equations are solved simultaneously.  Such monolithic formulations are accurate, but require 
significant computational expense, which has significantly hindered the ability to solve large scale, fully 
three-dimensional problems involving complex deformations and electromechanical instabilities of DEs.  
During this period, we have provided the theoretical basis for the effectiveness and accuracy of staggered 
explicit-implicit finite element formulations for DEs, where the mechanical and electrostatic equations are 
solved separately, while demonstrating the simplicity of the resulting staggered formulation.  We have 
demonstrated the stability and accuracy of the staggered approach by solving complex electromechanically 
coupled problems involving electroactive polymers, where we focused on problems involving 
electromechanical instabilities such as creasing, wrinkling, and bursting drops.  In all examples, effectively 
identical results to the fully monolithic solution are obtained, showing the accuracy of the staggered 
approach at a significantly reduced computational cost, as illustrated in Figures 6 and 7 below. 

• We anticipate this development will be critical in enabling ARL personnel to easily and efficiently adapt 
their simulation codes to perform large-scale structural analyses of the dynamic behavior of DEs. 

 



 
Figure 6:  Fully coupled, monolithic solution on the left side (a)-(c) vs. staggered, explicit-implicit solution on 
the right side (d)-(f) for a bursting drop problem within a DE.  ||u|| denotes the displacement magnitude. 
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Figure 7:  Ratio of elapsed time for monolithic model over elapsed time for staggered model (tm/ts) as a 
function of the total numbers of unconstrained degrees of freedom (ndof) for a 3D creasing problem.  Note 
that the staggered method becomes significantly cheaper than the monolithic method once the number of 
degrees of freedom exceeds about 1000. 
 

 
 

 
Collaborations and Technology Transfer 

• With Prof. K.C. Park, University of Colorado, an expert in computational modeling techniques for coupled 
physics problems. 

 
Resulting Journal Publications During Reporting Period 

• S. Seifi and H.S. Park.  “Computational Modeling of Electro-Elasto-Capillary Phenomena in Dielectric 
Elastomers”, International Journal of Solids and Structures 2016; 87:236-244. 

• S. Seifi and H.S. Park.  “Electro-elastocapillary Rayleigh-Plateau Instability in Dielecric Elastomer Films”, 
Soft Matter 2017; 13:4305-4310. 

• B. Osmani, S. Seifi, H.S. Park, V. Leung, T. Topper and B. Muller.  “Nanomechanical Probing of Thin-Film 
Dielectric Elastomer Transducers”, Applied Physics Letters 2017; 111:093104. 

• S. Seifi, K.C. Park and H.S. Park.  “A Staggered Explicit-Implicit Finite Element Formulation for 
Electroactive Polymers”, submitted to Computer Methods in Applied Mechanics and Engineering 2017. 
 

Graduate Students Involved During Reporting Period  
• Mr. Saman Seifi, who began as a PhD student on this project starting January, 2015 

 

Honors 

•  The PI (Park) was awarded the International Association for Computational Mechanics (IACM) John 
Argyris Award for Young Scientists in March 2016.  This award is given once every two years to a 
single investigator 40 years or younger, and recognizes outstanding accomplishments, particularly 
outstanding published papers. 

• PI Harold Park was named an ASME (American Society of Mechanical Engineers) Fellow for the class 

of 2016 
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